Innovative methods of design simulation for urban resilience in climate change

Z. Bulghari, M. V. Amidu, G. Guerri, C. Hauzer

EPDA Architecture Department, Florence University, Florence, Italy

National Research Project of Relevant Interest

“Adaptive design and innovation technology for resilient urban development on climate change”

Challenges

Climate change is one of the biggest challenges of our time, as it poses a threat to the environment, the economy, and the well-being of people. In this context, the Envi-met software has been used to design methodologies of innovative technological solutions that can reduce the impact of climate change. These solutions are aimed at governing extreme phenomenon of global warming, related to the extreme climatic events, and urban resilience, helping to ensure the effectiveness in the use of public space in extreme climatic conditions. The Predicted Mean Vote (PMV) is an index of outdoor thermal comfort that takes into account the micro-climate conditions and solar radiation in the environment and the boundary conditions of the simulation. This index is calculated through a set of parameters that consider the human body and the environment, in order to evaluate the comfort level of the users in the urban environment.

Method and tool

In this context, the Envi-met software has been used to design methodologies of innovative technological solutions that can reduce the impact of climate change. These solutions are aimed at governing extreme phenomenon of global warming, related to the extreme climatic events, and urban resilience, helping to ensure the effectiveness in the use of public space in extreme climatic conditions. The Predicted Mean Vote (PMV) is an index of outdoor thermal comfort that takes into account the micro-climate conditions and solar radiation in the environment and the boundary conditions of the simulation. This index is calculated through a set of parameters that consider the human body and the environment, in order to evaluate the comfort level of the users in the urban environment.